Sharp local lower $L^{p}$-bounds for Dyadic-like maximal operators
نویسندگان
چکیده
منابع مشابه
Sharp Weighted Bounds for Fractional Integral Operators
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp bounds are obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal...
متن کاملL Bounds for a Maximal Dyadic Sum Operator
The authors prove L bounds in the range 1 < p < ∞ for a maximal dyadic sum operator on R. This maximal operator provides a discrete multidimensional model of Carleson’s operator. Its boundedness is obtained by a simple twist of the proof of Carleson’s theorem given by Lacey and Thiele [6] adapted in higher dimensions [8]. In dimension one, the L boundedness of this maximal dyadic sum implies in...
متن کاملLp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR
Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).
متن کاملSharp Estimates for Maximal Operators Associated to the Wave Equation
The wave equation, ∂ttu = ∆u, in R, considered with initial data u(x, 0) = f ∈ H(R) and u′(x, 0) = 0, has a solution which we denote by 1 2 (e √ −∆f + e−it √ −∆f). We give almost sharp conditions under which sup0<t<1 |e ±it √ −∆f | and supt∈R |e ±it √ −∆f | are bounded from H(R) to L(R).
متن کاملDynamical Lower Bounds for 1d Dirac Operators
with Dirichlet boundary conditions, acting on l2(N,C2), resp. L2([0,∞),C2), where c > 0 represents the speed of light, m ≥ 0 the mass of a particle, I2 is the 2× 2 identity matrix and V is a bounded real potential. In the discrete case D is the finite difference operator defined by (Dφ)(n) = φ(n+1)−φ(n), with adjoint (Dφ)(n) = φ(n − 1) − φ(n), and in the continuous case D = D = −i d dx . Model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2013
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2013-11789-2