Sharp local lower $L^{p}$-bounds for Dyadic-like maximal operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Weighted Bounds for Fractional Integral Operators

The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp bounds are obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal...

متن کامل

L Bounds for a Maximal Dyadic Sum Operator

The authors prove L bounds in the range 1 < p < ∞ for a maximal dyadic sum operator on R. This maximal operator provides a discrete multidimensional model of Carleson’s operator. Its boundedness is obtained by a simple twist of the proof of Carleson’s theorem given by Lacey and Thiele [6] adapted in higher dimensions [8]. In dimension one, the L boundedness of this maximal dyadic sum implies in...

متن کامل

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

Sharp Estimates for Maximal Operators Associated to the Wave Equation

The wave equation, ∂ttu = ∆u, in R, considered with initial data u(x, 0) = f ∈ H(R) and u′(x, 0) = 0, has a solution which we denote by 1 2 (e √ −∆f + e−it √ −∆f). We give almost sharp conditions under which sup0<t<1 |e ±it √ −∆f | and supt∈R |e ±it √ −∆f | are bounded from H(R) to L(R).

متن کامل

Dynamical Lower Bounds for 1d Dirac Operators

with Dirichlet boundary conditions, acting on l2(N,C2), resp. L2([0,∞),C2), where c > 0 represents the speed of light, m ≥ 0 the mass of a particle, I2 is the 2× 2 identity matrix and V is a bounded real potential. In the discrete case D is the finite difference operator defined by (Dφ)(n) = φ(n+1)−φ(n), with adjoint (Dφ)(n) = φ(n − 1) − φ(n), and in the continuous case D = D = −i d dx . Model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2013

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2013-11789-2